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ABSTRACT 

Biomedical research generates a vast amount of information that is ultimately stored 

in scientific publications or in databases. The information in scientific texts is 

unstructured and thus hard to access, whereas the information in databases, although 

more accessible, often lacks in contextualization. The integration of information from 

these two kinds of sources is crucial for managing and extracting knowledge. By 

structuring and defining the concepts and relationships within a biomedical domain, 

BioOntologies have taken a key role in this integration. This chapter describes the role 

of BioOntologies in sharing, integrating and mining biological information, discusses 

some of the most relevant BioOntologies and illustrates how they are being used by 

automatic tools to improve our understanding of life. 
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INTRODUCTION 

The development of high-throughput techniques, such as DNA sequencing, 

microarrays and automated gene-function studies, is turning biology into an 

information-based science. This is reflected in the ever growing amount of biological 

data stored in databases and articles in scientific publications. 

Biomedical databases contain mostly sequence data and annotations
1
 on entities, such 

as genes and proteins. However, sequence data is growing at a far greater rate than the 

manual annotation of the entities, mainly due to curated annotations requiring 

experimental results to back them up. These are mostly recorded in the scientific 

literature. As a result, the annotation of databases falls upon expert curators, which 

have the difficult and time-consuming task of continuously tracking the literature. 

This has prompted the development of data and text mining approaches for automated 

annotation, which are now responsible for the vast majority of current annotations
2
. 

However, extracting knowledge from the literature is far from trivial, due to the 

inherent complexity of natural language used in scientific texts, preventing automated 

annotations from achieving the quality attained by expert curators. 

In fact, early automated approaches have produced a significant number of 

misannotations, which are now being propagated due to extrapolation of new 

                                                 
1 An annotation consists of a bioentity (e.g..: gene or protein) linked to a statement describing it (e.g.:in 

terms of molecular function, or location). 
2 Taking the UniProt knowledge base as an example, less than 10% of its protein entries are manually 

annotated. 



 

 

annotations derived from them (Devos and Valencia, 2001). Given that the vast 

majority of annotations is derived by extrapolation from previous annotations and 

most annotation efforts do not distinguish between extrapolated and curated 

annotations, this problem is even more serious (Valencia 2005). 

One way of improving the knowledge extraction process is by integration of the 

concepts and context of the field (a.k.a the domain knowledge) into the computational 

methods for annotation, so that they can achieve the same levels of performance of 

expert curators (Spasic et al., 2005). Evidently, this requires the translation of the 

domain knowledge from natural language into a clear, structured and unequivocal 

form to enable computational reasoning.  

The above reasoning leads to the consideration of creating ontologies, which can be 

defined as data models for representing concepts and their relationships within a given 

domain, enabling reasoning about the objects in that domain. In addition to their role 

as a source of domain knowledge in the annotation process, ontologies can also be 

used directly for annotation: biomedical databases can contain ontology terms 

annotating their entities instead of containing natural language annotation statements. 

This makes annotations more precise and consistent, and opens the way for 

computational reasoning over the annotations.  

The use of ontologies is also advantageous in other data management activities, such 

as data integration, data cleansing and data mining (Gardner, 2005). Data integration 

greatly benefits from the unified view provided by ontologies. If two or more 

databases share the same ontology for annotating their entities, exchanging and 

integrating information among them becomes much more efficient. The use of 

ontologies is also important as a guide for solving semantic conflicts between 

discrepant data sources. Given these factors, the growing use of ontologies has been a 



 

 

key factor in data integration, shifting the emphasis from knowledge management to 

knowledge representation. 

Data cleansing also benefits from the use of ontologies in that having a structured and 

precise meaning for concepts in a domain enhances the identification of inconsistent 

or erroneous database entries and the process of their correction.  

Data mining can profit from both data cleansing and data integration, so it benefits 

indirectly from the use of ontologies. In addition, it also benefits from the use of 

ontologies as a source of domain knowledge to guide the discovery process and as a 

semantic setting for expressing discovered patterns in concise terms. 

 

The focus of this chapter is explaining what is a BioOntology, describing some 

successful examples being used by automatic tools to perform important tasks. The 

rest of this chapter is organized as follows: the next section, BioOntologies, will start 

by presenting a generic definition of the ontology concept and then gives some 

examples of currently available BioOntologies. It will be followed by the section 

Towards Automatic Annotation, which explains the multiple uses of BioOntologies by 

automatic annotation tools and gives a brief overview of state-of-the-art tools already 

using BioOntologies. Finally, the Future Prospects section will discuss open 

questions on this subject, current expectations and possible future directions. 



 

 

BIOONTOLOGIES 

Since Ancient Greece, philosophy has dealt with the need to define and structure 

reality. Aristotle proposed a system to organize the objects of human perception in 

well-defined Categories, beginning with an explanation of synonyms, homonyms and 

paronyms. He recognized the importance of having clear unequivocal concepts to 

identify each object. In the 18
th

 century, Linnaeus applied these same concepts to the 

natural world and developed a taxonomy for classification of living things. These 

early ideas have evolved into the current definition of Ontology in philosophy as a 

systematic account of Existence, and as such much more complex than Classification. 

Although the concept of Ontology has been in use by philosophy for a long time, it 

was only with the emergence of Artificial Intelligence that computer science 

borrowed the term to establish content-specific agreements for the sharing and reuse 

of knowledge among software systems. In this context, Gruber defines an ontology as 

a specification of conceptualisations, used to help programs and humans share 

knowledge. Conceptualisations refer to the entities: the terms, the relationships 

between them, and also the constraints of those relationships (Gruber, 1991). On the 

other hand, specification refers to the explicit representation of the conceptualisations. 

Using this general description, controlled vocabularies, taxonomies and thesaurus can 

be considered ontologies (Bodenreider and Stevens, 2006). A controlled vocabulary is 

a list of terms that have been explicitly enumerated. A taxonomy is a collection of 

controlled vocabulary terms organised into a hierarchical structure. A thesaurus is a 

networked collection of controlled vocabulary terms. Ideally, an ontology should 

contain formal explicit descriptions of the concepts (often called classes) in a given 

domain, which should be organized and structured according to the relationships 



 

 

between them. They also make the relationship between concepts explicit, which 

allows further reasoning and enables a fuller representation of the information by 

including such aspects as interacting partners, specific roles, and functions in specific 

contexts or locations.   

Ontologies have been classified into three types (Stevens et al., 2000): 

1. Domain-oriented: either domain specific (e.g. ontology dedicated to a single 

species) or domain generalisations (e.g. dedicated to gene function or cellular 

components); 

2. Task-oriented: e.g. for annotation analysis; 

3.  Generic: defining high-level categories that are maintained across several 

domains (also called top-level or upper-level ontologies). 

A well structured ontology will reuse ontologies of the three types, but in a clearly-

defined modular way to allow structural modification and concept reusability. 

The role of BioOntologies has changed in recent years: from limited in scope and 

scarcely used by the community, to a main focus of interest and investment. Although 

clinical terminologies have been in use for several decades, different terminologies 

were used for several purposes, hampering the sharing of knowledge and its 

reliability. This has lead to the creation of BioOntologies to answer the need to merge 

and organize the knowledge, and overcome the semantic heterogeneities observed in 

this domain. While the first attempts at developing them focused on a global schema 

for resource integration, real success and acceptance was only achieved later by 

ontologies for annotating bioentities (Bodenreider and Stevens, 2006). Since then, 

BioOntologies have been used successfully for other goals, such as description of 

experimental protocols and medical procedures. The examples that follow represent 



 

 

some of the most widely-used BioOntologies for some of these goals, and also recent 

efforts for integrated development of BioOntologies. 

 

Gene Ontology 

The Gene Ontology
3
 (GO) was created for functional annotation of gene products

4
 in 

a cellular context (Ashburner et al, 2000). It is divided in three aspects (or GO types): 

molecular function, biological process and cellular component; which constitute three 

orthogonal ontologies. 

Each of these ontologies is structured as a Directed Acyclic Graph (DAG), which is 

identical to a tree with the exception that terms can have multiple parents (see Figure 

1). The terms are linked to each other by two types of relationships: is a and part of, 

the former expressing a simple class-subclass relationship and the latter expressing a 

part-whole relationship with the particularity that the existence of the whole does not 

imply the existence of the part. Each DAG has a root term homonymous to the 

corresponding GO type, and all three are linked to the global root term all. 

GO aims at being species-independent. However, as some functional aspects are not 

common to all life forms, some terms apply only to a given taxonomical group. In 

such cases, the terms in question specify the taxonomical group to which they apply 

preceded by the word sensu, as in the term chromosome organization and biogenesis 

(sensu Eukaryota). 

 

                                                 
3 http://www.geneontology.org 
4 A gene product is the product of a given gene at any level (DNA, RNA or protein). 



 

 

 

Figure 1: Section of the GO graph showing the three aspects (molecular function, biological process 

and cellular component) and some of their descendent terms. The fact that GO is a DAG rather than a 

tree is illustrated by the term transcription factor activity which has two parents. An example of a part 

of relationship is also shown between the terms cell part and cell.  

 

GO was developed by the GO Consortium, initially a collaboration between three 

model organism databases (FlyBase, SGD and MGD) to address the need for a 

common and consistent vocabulary to annotate gene products from different 

organisms. Since its origin, the GO Consortium has grown to 15 members, which 

cooperate in maintaining and updating the ontology. GO itself has become widely 

accepted by most gene and protein databases (both general and species specific) as the 

main vocabulary for annotation. 

One measure of GO’s success is that it not only has been extensively adopted by the 

community for its designed purpose, but has also been used for other purposes beyond 



 

 

it, such as functional comparison and function prediction of gene products. 

The success of GO is due to two key factors. First, GO had a clear and practical goal, 

and a limited but useful scope. This helped in keeping it focused throughout its 

development and, above all, ensured its simplicity and usefulness. Second, GO is 

developed with the involvement of the community, openly addressing its needs. This 

contributes to make it accessible for the community it wishes to serve, and ensures 

that it is kept updated. 

Despite this success, there is still room for improvement. Some authors suggest that a 

different model for representing the concepts may be required to deal with the 

growing compositionality of GO term names, while others have found dependence 

relationships between terms which are not accounted for or not possible
5
 in the GO 

structure. 

Having been the first ontology of its kind, GO’s success has lead to a blossoming of 

the field of BioOntologies. The relative simplicity of GO is what makes it both useful 

and accessible to the community. Profound changes to GO should be considered with 

care, since having a perfect ontology is useless if its complexity is beyond the grasp of 

most of its user community. 

 

Sequence Ontology 

The Sequence Ontology
6
 (SO) was developed for annotating biological sequences in a 

genetic context (Eilbeck et al, 2005). It encompasses one main aspect, sequence 

feature, plus three others: sequence attribute, consequences of mutation and 

chromosome variation; these aspects describe properties of the main aspect at several 

levels. Like in GO, these three aspects constitute separate ontologies with a DAG 

                                                 
5 The GO structure does not allow relationships between terms of different GO types. 
6 http://www.sequenceontology.org 



 

 

structure, with terms linked by is a and part of relationships (see Figure 2). However, 

sequence features can also be linked to sequence attributes with the has quality 

relationship, and sequence features can be linked non-hierarchically with the adjacent 

to or member of relationship. Also, as GO, SO is mostly species-independent, 

although some terms can be limited to certain taxonomic groups (e.g. intron-related 

terms only occur in Eukaryota). 

A subset of SO consisting only of sequence features is available under the name 

SOFA
7
, which can be used for automated sequence annotation whereas the full SO is 

intended to be used only by curated genome annotation projects. 

 

 

 

 

Figure 2: Section of the SO graph, showing the aspects located sequence feature and sequence 

attribute, and some of their descendent terms. The has quality relationship that links these two aspects 

is illustrated with the term engineered region which has the quality engineered. 

                                                 
7 Sequence Ontology Feature Annotation 



 

 

 

SO was also developed by the GO consortium with the goal of unifying the 

vocabulary used to describe sequence features, facilitating information exchange and 

retrieval and enabling computational reasoning over sequence annotations. It is a 

natural complement to GO, with the two together accounting for a large portion of the 

biological aspects for which there is a need for annotations in a large scale. 

However, when SO was developed, the main sequence databases (GenBank, EMBL 

and DDBJ) already had a well established terminology for sequence annotation (the 

Feature Table). This hampers SO’s acceptance by the community. The main 

argument in favour of SO is that it provides an underlying structure for the 

annotations, whereas the Feature Table is a controlled vocabulary with no formalized 

structure. The underlying structure of SO greatly facilitates the use of computational 

tools for mining sequence data, and may lead to its increasing adoption. 

 

MGED Ontology 

The Microarray Gene Expression Data (MGED)
8
 Ontology (MO) was created for 

describing microarray experiments, encompassing all aspects from the methodology 

and experimental design to biological samples (Christian et al, 2003). MGED is 

divided in two parts, a core ontology (MCO) and an extended ontology, the former 

providing a stable basic structure to ensure continuous compatibility with software 

applications and the latter an extension that enables content evolution (see Figure 3). 

MO has a simple structure consisting of several orthogonal trees corresponding to its 

various aspects, mostly linked by is a relationships that are relatively short in length 

(i.e. the number of levels between the root node and the leaf nodes is small). It 

                                                 
8 http://www.mged.org 



 

 

includes three categories of descriptors: classes, like Organism and BioMaterial, 

which define the types of data required for describing the experiment; properties, like 

has_disease_state and has_additive, which relate classes to descriptors characterizing 

them; and individuals, like cell_type and exon, which instantiate the classes. Some 

classes, namely Organism and Compound, are instantiated from identified external 

resources. For describing biological sequences, the Sequence Ontology is directly 

used. 

 

Figure 3: Section of the MCO tree, showing two of the main aspects (or packages), BioMaterial and 

Experiment. Boxes with frames represent classes, whereas boxes without frames, which are also leaf 

nodes, represent individuals. Only two or three class levels usually separate individuals from the root of 

the ontology, showing the relatively small height of the MCO tree. 

 

MO was developed by the MGED Society with the goal of providing the required 

semantics to support the existing MAGE-OM
9
 data model, which already provided a 

standardized format for representing and exchanging microarray experiment data. In 

addition, it was designed to serve as a resource for the development of computational 

tools for mining microarray data. 

                                                 
9 MicroArray Gene Expression Object Model 



 

 

Besides its wide use for describing microarrays, MO is also being used to describe 

other types of functional genomics experiments such as proteomics experiments. 

Being the first ontology describing a biological experiment, MO has paved the way 

for other related efforts, which lead to the creation of the integrative Ontology for 

Biomedical Investigations project (formerly FuGO
10

). 

 

Unified Medical Language System 

The Unified Medical Language System
11

 (UMLS) is a compendium (or an integrated 

ontology) of text mining-oriented biomedical terminology encompassing all aspects of 

medicine (Bodenreider, 2004). It comprises three distinct knowledge sources: the 

Metathesaurus, the Semantic Network, and the SPECIALIST lexicon. 

The Metathesaurus is an extensive, multi-purpose vocabulary database that integrates 

information from over one hundred clinical and biomedical databases and information 

systems, such as ICD, MeSH, SNOMED and GO. It defines biomedical concepts, 

listing their various names and relationships and mapping synonyms from different 

sources, thus providing a common knowledge basis for information exchange. It can 

be used autonomously for a variety of applications, namely linking between different 

clinical or biomedical information systems, and linking patient records to literature 

sources and factual databases. However, its utility is enhanced when used with the 

other UMLS knowledge sources. Since the Metathesaurus contains concepts and 

terms from diverse sources for diverse purposes, many specific applications require a 

customized reduced version of it, where only the areas of interest are included. 

The Semantic Network is an ontology of biomedical subject categories (semantic 

types) and relationships between them (semantic relations) with the purpose of 

                                                 
10 Functional Genomics Ontology 
11 www.nlm.nih.gov/research/umls/ 



 

 

semantically categorizing the concepts from the Metathesaurus (each term in the 

Metathesaurus is linked to at least one semantic type). Semantic types are organized in 

a tree-structure with major types including organism, anatomical structure, biologic 

function, chemical, and event. The tree edges are labeled with the main semantic 

relation, is-a, although several other non-hierarchical semantic relations also exist, 

grouped in five major categories: physically related to, spatially related to, temporally 

related to, functionally related to, and conceptually related to. 

The SPECIALIST Lexicon is an English language lexicon focused on biomedical 

vocabulary, but also including common English words. Each entry in the lexicon, or 

lexical item, includes syntactic, morphological and orthographic information, essential 

for natural language processing (NLP). This lexicon was developed to support an NLP 

system, also called SPECIALIST, which is available with the UMLS as a set of lexical 

tools. 

The UMLS was developed and is maintained by the US National Library of Medicine, 

with its main goal being the improvement of accessibility to biomedical information 

by facilitating its interpretation by computer systems. It successfully addresses the 

problem of coping with the multiplicity of vocabularies and terminologies in use in 

medicine through an integrative approach (the Metathesaurus) and complements it 

with a semantic structure that facilitates computer reasoning (the Semantic Network) 

and lexical information. This enables NLP-based text mining tools to explore the 

biomedical literature (the SPECIALIST Lexicon). These three factors, together with 

the all-encompassing scope of UMLS, make it an invaluable tool for mining medical 

data in any of its aspects. 

 

 



 

 

 

Open Biomedical Ontologies 

The Open Biomedical Ontologies
12

 (OBO) Foundry is a project dedicated to 

coordinating the development of new BioOntologies (Smith et al, 2007). It was 

established to deal with the growing number of efforts in the field that followed after 

the success of the Gene Ontology. 

The OBO Foundry defines a set of principles to which new ontologies should adhere 

in order to be accepted as members of the project. These are set to ensure high quality 

and formal rigor, and also interoperability between OBO member ontologies. As of 

December 2007, the key principles enforced are: 

 Open access: the OBO is intended to be a shared community resource, with 

all member ontologies openly available. 

 Delineated content: every new ontology must be orthogonal to other OBO 

ontologies to avoid the problems of redundant information and conflicting 

definitions, 

 Textual definitions: ontology concepts should include a precise textual 

definition to avoid ambiguity and convey the meaning within the context of 

the ontology. 

 Defined relationships: the OBO Foundry includes the Relation Ontology, 

which defines the possible relationship types between the terms of member 

ontologies; OBO ontologies should use these relationships or others defined 

in a similar way. 

                                                 
12 http:// obofoundry.org/ 



 

 

 Shared syntax: OBO ontologies must be expressed or expressible in a 

common shared syntax, which can be either the OBO syntax developed by the 

project, or OWL, the web ontology language defined by the W3C. 

The result of complying with these principles is that OBO ontologies have similar 

structural aspects and a shared syntax, which facilitates the integration of their 

information and makes the use of common software tools possible. Furthermore, by 

ensuring that the ontologies are orthogonal, redundancy is minimized and the problem 

of having concurrent definitions for the same concepts is avoided. 

In this manner, the OBO Foundry project aims at preventing the problem that UMLS 

was designed to solve. By ensuring that new BioOntologies grow in concert with each 

other, no a posteriori integrative solution should be required. 

 

TOWARDS AUTOMATIC ANNOTATION 

One of the main applications of text mining and data mining in biomedical research is 

the automatic annotation of biological entities. 

The main source of annotation data is the scientific literature, since text is still the 

preferred medium of communication among biomedical researchers. The main link 

between text and BioOntologies is a terminology where textual terms are associated to 

concepts in the BioOntology (Spasic et al., 2005). However, two main issues arise 

when linking textual terms to ontologies: the imprecise and inconsistent use of 

terminology in text and the incompleteness of ontologies. There is a high degree of 

term ambiguity and variation in the biomedical field, often preventing a direct 

mapping between ontology concepts and terms in text. Term variation arises from the 

many synonyms that exist for gene products, diseases, etc, whereas term ambiguity 



 

 

originates from the various sub-domains and niches inherent to the field, where terms 

can have different meanings depending on the context. 

Text Mining (TM) can be used to extract relevant information from the scientific 

literature to aid in bioentity annotation. The most widespread use of TM in biomedical 

applications is on the retrieval of small chunks of relevant information from large 

collections of unstructured text (Couto and Silva, 2006). Typically, TM makes use of: 

Information Retrieval (IR), for retrieving and filtering of relevant texts; Information 

Extraction (IE), to select specific information about predefined entities; Natural 

Language Processing (NLP), to process natural language into a machine-readable 

form; and Machine Learning (ML), to classify, cluster and extract relations. All these 

approaches can benefit from the use of BioOntologies to assist in the semantic 

interpretation and integration of text. 

IR tools are frequently used by the biomedical community (e.g. PubMed). However, it 

is important to take into consideration synonyms and polysemes, and not restrict IR to 

exact term matching, in order to achieve a balance between loss of information and 

loss of relevance. BioOntologies provide not only a semantic layer to define such 

cases, but also a hierarchical organization which allows expanded querying (e.g. 

retrieving documents that do not have the query term but one of its descendents or 

ancestors). 

Biomedical IE can range from simple Named Entity Recognition (NER) to the more 

complex extraction of relations, networks, etc. NER is the identification and mapping 

of a term detected in text to a concept; since many term occurrences are variants, it is 

possible to use the list of terms present in a BioOntology to derive a training set to 

detect new terms. To extract more complex types of information, BioOntologies 

should be used beyond their lexical properties, guiding and constraining the semantic 



 

 

analysis with their structural and relational properties. 

The application of NLP to BioLiterature can profit from the integrated use of 

BioOntologies at different levels: tokenization (e.g.: recognizing “androgen receptor” 

as an entity, rather than two separate ones), syntactic processing (parsing the syntactic 

structure often implies the semantic relations between the concepts), sense 

disambiguation (referring to the definition of a term in a BioOntology can elucidate 

the correct meaning of the term in the text). In addition, the simultaneous use of NLP 

and BioOntologies allows higher quality inferences to be made, by translating the 

linguistic structures generated by NLP into an ontology-based schema with its finer-

grained representation of knowledge (Friedman et al., 2006). 

BioOntologies can be used as training corpora for ML techniques, either as simple 

lists of classified terms, or making use of the relational and hierarchical information to 

perform clustering and classification. 

Biomedicine is an inherently complex area and, as such, coherent and concise 

annotations of bioentities are crucial for computational reasoning. Traditional TM 

techniques have been shown to fall short of the biomedical community’s needs, 

performing worse than in other domains. To be successful, TM applications need to 

be supported by an explicit semantic representation of the kind provided by 

ontologies. Below, we describe four tools than can be used to retrieve and extract 

relevant information for annotation, all of which make use of BioOntologies. 

 

GoPubMed 

GoPubMed
13

 is an ontology-based literature search tool, which extracts GO terms 

from PubMed abstracts retrieved by keyword search. PubMed is a service of the U.S. 

                                                 
13 http://www.gopubmed.org/ 



 

 

National Library of Medicine that includes over 16 million citations from MEDLINE 

and other life science journals for biomedical articles back to the 1950s. PubMed 

includes links to full text articles and other related resources. The extracted GO terms 

are then used to induce a relevant and browsable sub-ontology, which allows for a 

quick navigation from general to more specific terms, due to the hierarchical nature of 

GO. 

GoPubMed makes use of the Gene Ontology for two different tasks: GO term 

extraction, which uses an algorithm that explores the inherent characteristics of GO 

(hierarchy and substring relationships between terms), and the construction of the 

minimal sub-ontology that contains all the extracted terms. These allow enhanced 

keyword searches, which usually demand a good understanding of the domain to 

obtain good results.  The technique allows detection of relevant keywords derived 

from GO, even when they are not mentioned in the articles.  

The tool also enables exploration of the abstracts at different levels of detail by 

structuring them according to the induced sub-ontology, making the large amounts of 

information retrieved more manageable (Delfs et al, 2004). 

GoPubMed refines traditional PubMed keyword search by incorporating domain 

knowledge from GO, gearing it towards the molecular biology community. It provides 

researchers with a more relevant and structured set of results, which could be 

overlooked when using PubMed queries.  

 

Textpresso 

Textpresso
14

 is an ontology-based information retrieval and extraction system for 

biomedical literature first developed for C. elegans. Instead of using an established 

                                                 
14 http://www.textpresso.org/ 



 

 

ontology, like GO, Textpresso uses its own ontology, which is organized into a 

shallow hierarchy with several parent categories of terms, some of which overlap GO 

and constitute the majority of the Textpresso lexicon. These categories are split into 

three groups: the first consists of biological entities, such as genes, cells or species; 

the second group contains terms that characterize a biological entity or establish a 

relation between two of them (e.g. binding, regulation); the third group contains 

auxiliary categories involved in semantic analyses of sentences. 

Textpresso contains a collection of full-text scientific articles where each word or 

phrase is labelled according to the Textpresso lexicon, which makes it is easier to 

query. 

The search engine of Textpresso allows the user to formulate queries by combining 

keywords and Textpresso categories, which enables the formulation of semantic 

queries that impart much more meaning than simple keyword searches. The user can 

query against whole categories to retrieve all the information pertaining to a broad 

area, or he can combine keywords, categories and sub-categories to confine the search 

to a more specific theme. The categories that include entities and relationships enable 

the semantic contextualization of the query, whereas the auxiliary categories allow for 

a better retrieval of the relevant information from the texts.  So the user queries the 

literature in the framework of the ontology and obtains sentences to be inspected. A 

typical result page shows a list of documents with all bibliographical information, 

abstract and all sentences having a match for an ontology term, links for the full-text 

available online; PubMed related articles are also provided when available (Müller et 

al, 2004). 

The main advantages of Textpresso lie on the use of the full-text of scientific articles, 

as well as on the possibility of building meaningful queries by the use of categories, 



 

 

since each category corresponds in practice to a large set of keywords. However, 

Textpresso may be hindered by the lack of complete literature coverage, and the use 

of an ontology or lexicon that are not rich enough. 

 

EBIMed 

EBIMed
15

 combines document retrieval with co-occurrence based summarization of 

MedLine abstracts. The tool retrieves abstracts selected through keyword queries and 

filters them for biomedical terminologies maintained in different public 

bioinformatics resources: UniProtKb provides the terminology for proteins, Gene 

Ontology for describing cellular components, biological processes and molecular 

functions, MedLinePlus for identification of drugs and the NCBI taxonomy as 

terminology resource for species. EBIMed makes use of these resources as a simple 

source of terminology, any extra information that can be conveyed, such as 

relationships in the Gene Ontology and hierarchies in the NCBI taxonomy, is not 

used. 

EBIMed looks for every UniProtKb protein in the text that co-occurs with another 

UniProtKb protein, GO term, drug or mention of a species because these can be 

interpreted as protein-protein interactions, functional annotations, drug targets and  

model organisms. The extracted sentences and terminology are used to generate an 

overview table of these paired co-occurring terms (Rebholz-Schuhmann et al, 2007). 

The advantage of EBIMed is the extensive use of biomedical terminology resources to 

process PubMed abstracts and report associations between terms, thus giving an 

overview of a multitude of relations and organizing the information. 

 

GOAnnotator 

                                                 
15 www.ebi.ac.uk/Rebholz-srv/ebimed/ 



 

 

GOAnnotator
16

 links the GO terms present in the uncurated annotations with evidence 

text automatically extracted from the documents linked to UniProt entries. The input 

to GOAnnotator is a UniProt accession number, which is used to access the 

bibliographic links in the UniProt database and retrieve the documents. Additional 

text for mining is retrieved from the GeneRIF database or supplied by the user. 

GOAnnotator then extracts GO terms from the documents and ranks them according 

to their similarity to the GO terms present in the uncurated annotations (see Figures 4 

and 5). 

GOAnnotator uses the Gene Ontology for two tasks: recognize terms in the text and, 

as a framework for calculating the semantic similarity between pairs of terms. 

 The extraction of GO terms is performed by FiGO, a rule-based method that does not 

use make use of NLP techniques and does not require manual intervention. FiGO 

assigns a confidence value to each GO term that represents the terms’ likelihood of 

being mentioned in the text based on the nomenclature of GO.   

GOAnnottor uses the Gene Ontology Annotation (GOA) database, which provides 

GO annotations to proteins in the UniProt Knowledgebase (UniProtKB) and 

International Protein Index (IPI). GOA is a central dataset for other major multi-

species databases, such as Ensembl and NCBI. GOAnnotator ranks the documents 

based on the extracted GO terms from the text and their similarity to the GO terms 

present in the uncurated annotations, using the measure proposed by Lin (Lin, 1998). 

This measure combines GO hierarchy and term usage in the GOA database to achieve 

a measure of GO term semantic similarity (Couto et al, 2006). 

GOAnnotator not only provides the evidence to support uncurated annotations, as 

well as predicts new and more specific annotations. It can also benefit from the 

                                                 
16 http://xldb.fc.ul.pt/rebil/tools/goa/ 



 

 

incorporation of other text-mining methods, since FiGO was not designed specifically 

for the extraction of annotations. 

 

Figure 4. GOAnnotator:  Some of the documents retrieved for the protein Ras GTPase-activating 

protein 4. The documents are sorted by the most similar term extracted from their text. The curator can 

use the Extract option to see the extracted terms together with the evidence text. By default 

GOAnnotator only uses the abstract, but the curator can use the AddText option to replace or insert 

text. 

 

 

Figure 5. GOAnnotator:  For each uncurated annotation, GOAnnotator shows the similar GO terms 

extracted from a sentence of the selected document. If any of the sentences provides correct evidence 

for the uncurated annotation, or if the evidence supports a GO term similar to that present in the 

uncurated annotation, the curator can use the Add option to store the annotation together with the 

document reference, the evidence codes and any comments. 

 

 



 

 

The use of BioOntologies 

The tools reviewed above make use of BioOntologies in quite diverse manners (see 

Table 1). The most straightforward approach is implemented by EBIMed, where 

BioOntologies are used as a source of terminology to match the entities present in the 

literature. BioOntologies also provide evidence of association between different kinds 

of bioentities. Textpresso, on the other hand, uses its own built-in BioOntology to 

allow word meaning to be queried. The possibility of semantic query formulation 

enables the usage of this tool both as a search engine and as a curation tool. 

GoPubMed uses both the concepts and the structure of its BioOntology, not only 

matching the concepts to terms in the literature, but also exploring the hierarchical 

relationships among the retrieved terms to provide a multi-level navigation interface 

for accessing the retrieved texts at different resolutions. GOAnnotator goes beyond 

concept definition and ontology structure, by integrating both to calculate similarities 

between concepts. This enables this tool propose new annotations in addition to 

retrieving evidences from text support existing annotations. 

 GOAnnotator GoPubMed Textpresso EBIMed 

Text Mining 

/ NLP 

Rule-based 

No NLP 
NLP 

Rule-based/ 

low NLP  
NLP 

Ontology GO GO 
Textpresso 

Ontology 

GO / NCBI 

taxonomy / 

MedLine Plus / 

UniProt 

Usage of 

Ontologies 

Extract terms 

and compute 

similarities 

Creation of 

GO 

subontology 

based on 

extracted terms 

Enhance 

keyword 

query 

Retrieval of 

term co-

ocorrences 

Goal 

Retrieval of 

evidence for 

uncurated 

annotations 

Construction 

of browsable 

relevant sub-

ontology 

Document and 

statement 

retrieval based 

on relevant 

ontology 

categories 

Retrieval of 

MedLine 

statements 

 

Table 1.  Overview of the surveyed tools according to TM/NLP techniques, BioOntologies and goals. 



 

 

FUTURE PROSPECTS  

Due to the quantity and diversity of information it generates, the biomedical sciences 

are one of the most promising fields for application of ontologies and text mining. The 

growth of both domains has been mostly the result of investments from large research 

consortia, which conduct expensive projects that have generated and maintain most of 

the publicly available biomedical data. Nevertheless, small institutions with limited 

resources play an important role, complementing the available data and developing 

innovative approaches that could grow into important trends. For instance, the 

management of well-founded and broad BioOntologies is clearly an issue to be 

addressed by large research institutes, but smaller institutions are making important 

contributions on the development of useful tools to explore that information. 

Because of the diversity and evolving nature of biomedical information, designing 

BioOntologies is a complex task. It requires agreement among the members of a 

community to define the concepts within its scope, and constant involvement from 

that community to correct and complete those definitions, since the concepts can 

change with time or become obsolete, and new concepts can arise. As the success of a 

BioOntology is directly related to involvement of the community, ontology 

developers should always consider their expectations and limitations, both when 

designing and updating a BioOntology. 

While BioOntologies are traditionally used mainly for annotation purposes, their 

ultimate goal should be to accurately represent the domain knowledge so as to allow 

automated reasoning and support knowledge extraction. The establishment of guiding 

principles, as in OBO, to guide the development of new BioOntologies is a step in this 

direction, by promoting formality, enforcing orthogonality, and proposing a common 

syntax that facilitates mapping between BioOntologies. This not only improves the 



 

 

quality of individual BioOntologies, but also enables the concerted use of several 

BioOntologies by computational methods. 

However, from the point of view of TM applications, current BioOntologies are still 

too incomplete, too inconsistent and/or too morpho-syntactically inflexible to 

efficiently support them. To overcome these limitations, BioOntologies could be 

designed with TM in mind, for instance by taking advantage of more complex NLP 

techniques rather than simple text statistics, or even by applying TM techniques in 

their construction to expand their coverage through automated population and 

improve their interoperability through automated mapping and integration. 

While Bioinformatics has been essential to deal with the growing amount of data and 

knowledge in Biomedical sciences, its whole potential is still unrealised and it will 

doubtlessly play a major role in their ultimate goal: understanding how living systems 

function, and understanding life as a whole (Ideker et al., 2001). Many relevant 

biological discoveries in the future will result from an efficient exploitation of the 

existing and newly generated data, which will require innovative and efficient data 

management and integration approaches. Prominent among these will certainly be the 

development and use of BioOntologies. 
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KEYWORDS 

 

BioLiterature: The collection of scientific publications in biomedicine. 

 

Biomedical Databases: Databases that store and maintain biomedical data such as 

gene and protein sequences. 

 

Molecular Biology: Concerns itself with understanding the molecular interactions 

between the various systems of a cell.  

 

Ontology: Is defined as a specification of a conceptualisation that describes concepts 

and relationships used within a community. 

 

BioOntology: A BioOntology is an ontology for the biomedical knowledge domain. 

 

Data Mining: The process of discovering meaningful correlations, patterns, and 

trends by sifting through large amounts of data stored in repositories, using pattern 

recognition technologies as well as statistical and mathematical techniques. 

 

Text Mining: The process of extracting relevant and non-trivial information and 

knowledge from unstructured text, usually a collection of documents. 

 


